#### PLAIN ENGLISH INSTRUCTIONS FOR HACH WATER QUALITY KITS

REVISED MAY 2008
Gregory N. Whitis
Extension Aquaculturist
Alabama Fish Farming Center
Greensboro, Alabama 36744

## General Instructions on Using HACH Kits

- 1. Keep glassware clean and rinse with pond water between tests.
- 2. Follow directions carefully and be precise when measuring volumes or counting drops. Slight errors will be greatly magnified due to small sample sizes.
- 3. All the reagents and pillows should be replaced if over one year old. The pH solutions may need to be replaced every six months.
- 4. Do not get chemicals on skin or clothing. Read all warnings provided with kit.

Trade names are used to provide specific information. Mention of a trade name does not constitute a guarantee of the product nor does it imply endorsement over comparable products that are not named by Alabama Fish Farming Center and its cooperating agencies.

## **DISSOLVED OXYGEN**

- 1. Fill glass-stopped bottle with pond water cap under water without trapping bubbles under stopper.
- 2. Add one pillow of D.O. I and one pillow of D.O. II.
- Shake to mix.
- 4. Allow broken floc to form. Let stand until floc has settled halfway. Shake again. Let it settle.
- 5. Add D.O. III pillow. Shake to mix.
- 6. Fill plastic measuring tube level full with prepared sample.
- 7. Pour into mixing bottle.
- 8. Add sodium thiosulfate solution drop by drop while swirling bottle. Count drops until solution changes from yellow to clear.
- 9. Each drop is equal to 1 ppm dissolved oxygen.
  - TIP: Hold eyedroppers straight up and down when releasing drops Eyedropper's position will affect the size of the drop! Also, don't let eyedropper touch side of bottle.

#### CARBON DIOXIDE (CO<sub>2</sub>)

- 1. Fill mixing bottle very slowly without shaking to 15 ml with pond water. It's preferable to do this test on the pond bank for accurate results.
- 2. Add two drops of phenolphthalein. If it immediately turns pink then  $\underline{no}$  CO<sub>2</sub> is present.
- 3. Add Sodium Hydroxide solution (.0IN) drop by drop. Count drops until light pink color persists for thirty seconds.
- 4. Each drop equals 2.0 ppm CO<sub>2</sub>.

TIP: One part per million (ppm) is equal to one milligram per liter (mg/1).

### NITRITE-NITROGEN (NO<sub>2</sub>-N)

- 1. Prepare viewing apparatus. (Be sure <u>red</u> nitrite wheel is inside box.)
- 2. Fill two glass tubes up to the white lines with pond water.
- 3. Add one NitriVer pillow to one tube. Shake for one minute. Place prepared sample in right hole. Untreated sample goes in left hole.
- 4. If nitrite is present prepared sample will turn light pink to dark cherry red. Read results after 5 to 10 minutes.

TIP: The nitrite color wheel only reads up to 1/2 ppm nitrite-nitrogen. If the sample is redder than the wheel a dilution must be performed. See dilution instructions for nitrite and ammonia.

## **CHLORIDES (SALT)**

- 1. Add 46ml of pond water to oxygen bottle. Use square bottle to measure.
- 2. Add one Chloride 2 pillow, swirl to mix.
- 3. Add silver nitrate solution drop by drop and swirl to mix. Be sure to shake silver nitrate before using.
- 4. Count drops until water changes from yellow to red-brown. Yellow color must completely disappear.
- 5. Each drop is equal to 3.75 ppm chloride.

#### TOTAL AMMONIUM NITROGEN (TAN or N-NH<sub>3</sub>)

- 1. Prepare viewing apparatus. (Be sure yellow ammonia wheel is in the box.)
- 2. Fill two glass tubes up to the white lines with pond water.
- 3. If the water sample is high in hardness (over 200 ppm) or high in chlorides (over 200 ppm), use one drop of Rochelle Salt Solution to each glass tube.
- 4. Add three drops of Nessler reagent to one of the tubes and place in right hole. Left hole gets the unprepared sample.
- 5. Wait 5-10 minutes for color development.
- 6. Read the results. Compare reading with ammonia stress chart.

TIP: The ammonia wheel only reads up to 3.0 ppm total ammonium nitrogen. If the prepared sample is darker than the wheel a dilution must be performed. See the dilution instructions.

#### pН

- 1. Prepare viewing apparatus. (Be sure pH color wheel is in the box.)
- 2. Fill two glass tubes up to the while lines with pond water.
- 3. Add 6 drops of pH indicator solution to one tube and place in the right hole. Untreated sample goes in left hole.
- 4. Match the color of the tube with the wheel and read the results. Sometimes the colors will not match exactly.

TIP: pH levels will change during the day in fish pond. High readings occur near sundown and low readings occur at sunrise.

#### TOTAL ALKALINITY

- 1. Fill the plastic measuring tube with pond water. Empty into square mixing bottle.
- 2. Add one Brom-Cresol Green Methyl Red powder pillow and swirl to mix.
- 3. Add Sulfuric Acid Standard Solution drop by drop until color changes from bluegreen to orange or pink. Swirl while adding drops.
- 4. Each drop is equal to 17.1 ppm Total Alkalinity.
  - TIP: If three drops or less of sulfuric acid causes a color change, use three tubes full of pond water and multiply the number of drops by 5.7 for more accurate results.

#### TOTAL HARDNESS

- 1. Fill plastic measuring tube with pond water. Pour into square mixing bottle.
- 2. Add three drops of buffer solution, Hardness 1, to mixing bottle and swirl.
- 3. Add two drops of ManVer hardness indicator solution to bottle and swirl.
- 4. Add Titrant Reagent, Hardness 3, drop by drop swirling until color changes from pink to blue.
- 5. Each drop is equal to 17.1 ppm Total Hardness.

TIP: For better fry survival and production, fry ponds should have equal hardness and alkalinity. See a biologist for assistance.

## <u>Dilution Instructions For Total Ammonium-Nitrogen and Nitrite</u>

If the prepared sample is darker than the maximum reading on the wheel, the sample must be diluted with distilled water.

- 1. Start all over.
- 2. Using a 5ml pipet, place 1 ml of pond water in both tubes.
- 3. Add 4 ml of distilled water to each tube, shake to mix.
- 4. Add Nessler or Nitrite chemical to only one tube. Shake. Place in box.
- 5. Wait 5-10 minutes. Read results and multiply wheel reading by 5.

# **MANAGEMENT OF WATER QUALITY IN CATFISH PONDS**

Gregory N. Whitis
Extension Aquaculturist
Alabama Fish Farming Center
Greensboro, AL 36744
Adapted from Andrew J. Mitchell, USFWS

| WATER QUALITY PROBLEM                                                      | TREATMENT                            | COMMENTS                                                                                                                                                       |
|----------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Low Alkalinity<br>Less than 30 ppm                                         | Calcium hydroxide<br>(hydrated lime) | Add 50 lbs/surface acre then check alkalinity level.                                                                                                           |
|                                                                            | Sodium bicarbonate                   | About 3.7 lbs./acre foot will increase the alkalinity one ppm.                                                                                                 |
|                                                                            | Agricultural limestone               | Apply at 1-2 ton/ surface acre to pond. For more accurate application rates determine the mud lime requirement every 2-3 years.                                |
| Low Chlorides Less than 10                                                 | Sodium chloride (salt)               | 45 lbs/acre foot of salt will increase the chlorides 10 ppm.                                                                                                   |
| High pH<br>9.5 - 11.0                                                      | Sodium bicarbonate                   | Add up to 200 lbs./surface acre, then check pH. Limited effectiveness in ponds with alkalinity over 100 ppm.                                                   |
|                                                                            | Gypsum                               | (TA-TH) x 2.2 x 2.71= lbs of gypsum per acre foot                                                                                                              |
|                                                                            | Alum                                 | Contact a Fisheries Biologist or an Extension Aquaculturist                                                                                                    |
| Low pH 4-5.9                                                               | Sodium bicarbonate                   | Add up to 200 lbs./acre, then check.                                                                                                                           |
|                                                                            | Calcium hydroxide                    | Add 100 lbs/acre, then check again. Check carbon dioxide level also.                                                                                           |
| High Ammonia Levels<br>5.0 and up                                          | Pump in fresh water.                 | Fresh pond or well water may provide a small area of acceptable water to the stressed fish.                                                                    |
|                                                                            | Reduce feeding rate.                 | Do not use algicides. Fertilize pond to stimulate algae bloom.  Do not use fertilizers to stimulate algae blooms if there is an existing aquatic weed problem. |
| High Nitrite Levels(fish are visibly stressed)                             | Sodium chloride                      | 100 lbs/acre-foot for every 1 ppm nitrite- nitrogen. Dump salt near edge of water and use pto paddlewheels to disperse.                                        |
| High Carbon Dioxide Levels<br>Greater than 25 when D.O.<br>less than 4 ppm | Calcium hydroxide                    | About 25 lbs./acre-foot to remove 10 ppm carbon dioxide.                                                                                                       |
|                                                                            | Aerate                               | This is only useful if oxygen levels are low.  Do not use sodium bicarbonate (baking soda) to remove carbon dioxide!                                           |
| Hydrogen Sulfide Poisoning                                                 | Potassium permanganate               | Put about 5 ppm in area of net landing.                                                                                                                        |