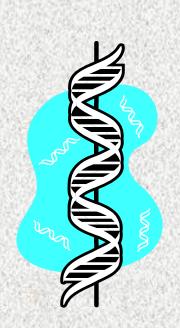
Trout Aquaculture Research at the National Center for Cool and Cold Water Aquaculture


Caird Rexroad

USDA/ARS
National Center for Cool and Cold Water
Aquaculture

Leetown, West Virginia

USDA Secretary of Agriculture

Under Secretary for Research, Education, and Economics

Agricultural Research Service Economics Research Service National
Agricultural Statistics
Service

Cooperative State
Research Education &
Extension Service

National Center for Cool and Cold Water Aquaculture

To support and enhance the nation's cool and cold water aquaculture production through research and technology transfer.

US Trout Industry

- Rainbow trout are the most cultured coldwater fish in the US, 747 locations
- → ~390 Commercial farms composed a ~\$95 million industry in 2007
 - Foodfish ~\$80 Million
 - Most sales to processors and restaurants
 - Stockers ~\$5.84 Million
 - Fingerlings ~\$1.7 Million
 - Eggs ~\$7.5 Million
- ~433 State/Federal/Private locations with production aimed at conservation and restoration valued at an additional \$102 million in 2007
- Majority of production in California, Wisconsin, Michigan, North Carolina, Pennsylvania, and Idaho (53% of sales of food size fish)
- - Compete also with Salmon, Shrimp, Catfish, and Tilapia

ERS Aquaculture Outlook, NASS Trout Production

US Rainbow Trout Industry

Large Operations

- Troutlodge, Sumner, WA
 - · Egg producer
 - Large Breeding program evaluating Hatch-out rates, Feed Conversion, Growth, Survivability, Uniformity, Flesh quality, Flesh yield, and Disease-resistance

ClearSpring Foods, Buhl, Idaho

- Vertically Integrated feeds, broodstock, production, processing, sales
- Large Breeding program

Smaller Operations, USA

- USTFA
- NAA
- State Associations

Associated Industries

- Feed Production
- Aquatic Health and Diagnostics
- Genetic Services
- Aquaculture Systems
- Federal/State Hatchery Systems

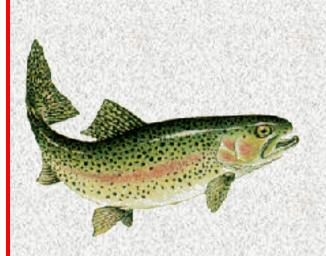
Customer/Stakeholder Workshop: Issues faced by the US Rainbow Trout Industry

Disease

- Fp, IHNV, IPNV
- Certifications

Production Traits

- Feed efficiency
- Growth
- Stress tolerance (handling, crowding, low O₂)


Consumer Traits

- Flesh color
- Fillet quality

Nutrition

- Next generation of feeds
- Chromosome Set Manipulation
 - Tetraploid/triploid production

NCCCWA's role in supporting the US Rainbow Trout Industry

- Two major companies from this industry have large breeding programs
- Several of the issues arising from the first NCCCWA Customer/Stakeholder meeting can be addressed through breeding
- NCCCWA Team Objectives:
 - Develop and evaluating selective breeding strategies for trout, developing improved germplasm in the process, complementing ongoing industry efforts.
 - Conduct basic and applied research to understand environmental factors and biological mechanisms controlling traits of interest.

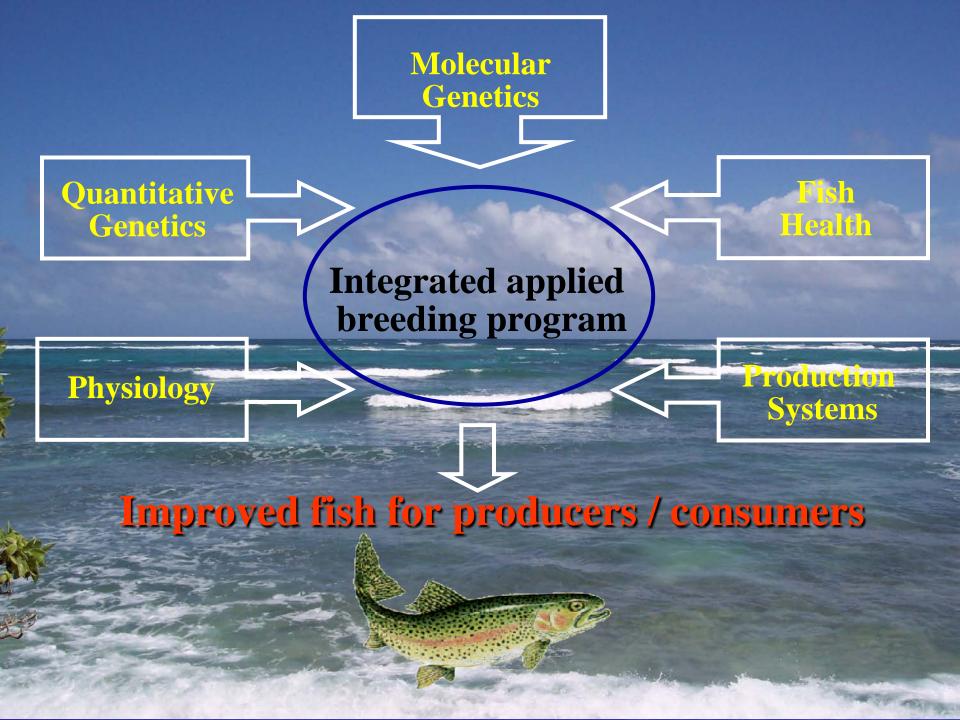
Transfer technologies and germplasm to industry

Scientific Staffing

GENETICS and PHYSIOLOGY

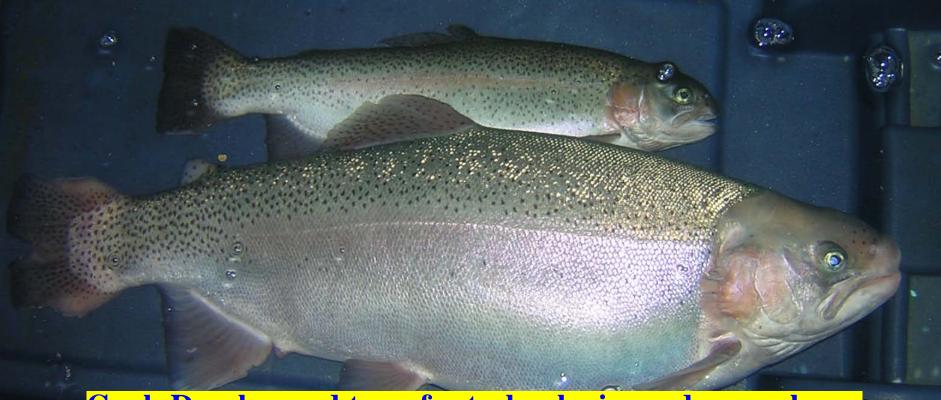
- Research Physiologist Dr. Greg Weber
- **♣** Research Geneticist Dr. Timothy Leeds
- Growth Physiologist Vacant

GENOMICS


- * Molecular Geneticist Dr. Yniv Palti
- **♣** Molecular Biologist Dr. Caird Rexroad III
- **♣** Molecular Biologist Vacant
- Computational Biologist Dr. Roger Vallejo

FISH HEALTH

- **♣** Molecular Immunologist Dr. Greg Wiens
- Research Pathologist Dr. Tim Welch
- **♣** Microbiologist Dr. Jason Evenhuis


Scientific Support Staffing

- Research Technicians (13)
- Administrative Assistant (2)
- Information Technologist (1)
- Facilities Management (2)
- **Water Systems Operator (1)**
- Wet Lab Crew (5)

Selective Breeding

Hypothesis: Sufficient genetic variation exists in NCCCWA broodstock to realize genetic improvement through selection.

Goal: Develop and transfer technologies and germplasm 55 to the aquaculture industry

Germplasm Research and Production

Biology

- **High Fecundity**
- Cryopreserve Sperm
- Response to Photoperiod Manipulation

Crosses

- **▶** Intraspecific crosses within species
- > Interspecific crosses crosses between two species
- > F1 Crosses first generation, abundance of heterozygosity and uniformity
- Backcrosses cross of F1 and parent
- > Full Sib Crosses regular
- Half Sib Crosses one common parent

***** Genetic Manipulation

- > Transgenics insert DNA
- Clonal lines doubled haploids
- Sex reversal
- > Chromosome Set Manipulation

Genetic Improvement of Aquaculture Species

- 1. Define trait
- 2. Identify variation in a trait directly due to variation in DNA sequence (Heritability)
 - **Sequence variation can be in or around a gene and changes how the gene functions**
- 3. Understanding of the basic genetics of the trait
 - (mode of inheritance)
- 4. Develop technologies designed to exploit positive genetic variation
- 5. Use those technologies to development of genetically improved strains

Quantitative Genetics Definitions

- * Quantitative Genetics use of statistics to assign breeding values to broodstock used in selective breeding programs for the development of superior strains for aquaculture
- **♣** *Phenotype* category or classification of a trait
- * Heritability the extent to which an animals breeding value can be predicted from its phenotype, = V_G/V_P
- **♣** Germplasm biological resource material

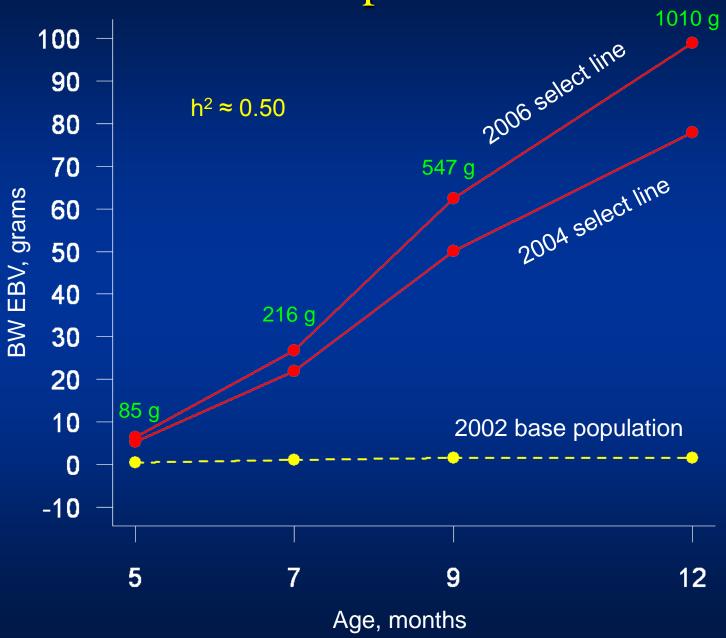
Quantitative Genetics $V_P = V_G + V_E + V_{GxE}$...

- **♣** V_P= variation in phenotype
- V_G =variation due to genetics $(V_A+V_D+V_{AxD}...)$
- * V_E =variation due to environment (V_N + V_T + V_{PP} ...)
- **♣** V_{GxE}=variation due to gene x environment interactions
- Continuous variation
- Discontinuous variation
- ***** Use of specific crosses to determine heritability of a trait and to determine breeding values

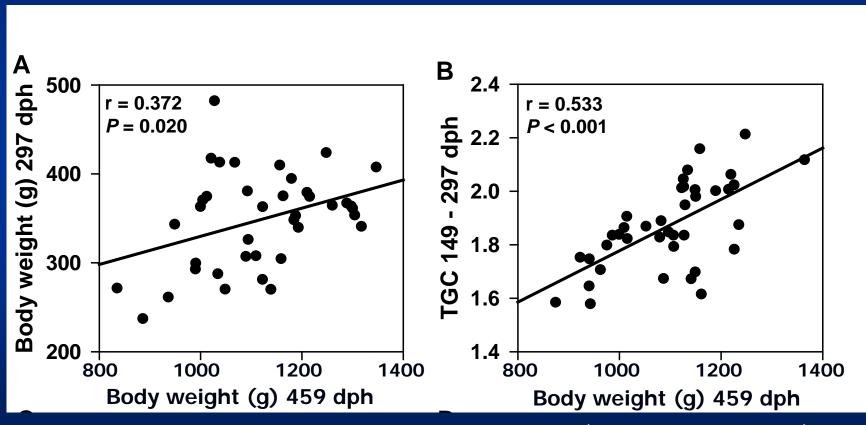
Mapping Traits - Heritability

Selection Approach

Broodstock Population of 100 Families

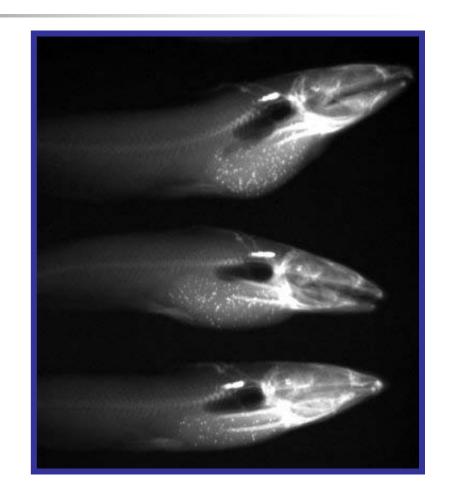


Physiological characterization of selection traits


Performance Evaluation Growth performance (even year) Disease resistance (odd year)

Selection of Top 10% Families

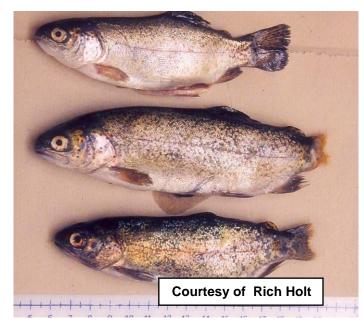
Growth Improvement Line



Trait Characterization: Thermal Growth Coefficient and Future Growth Performance

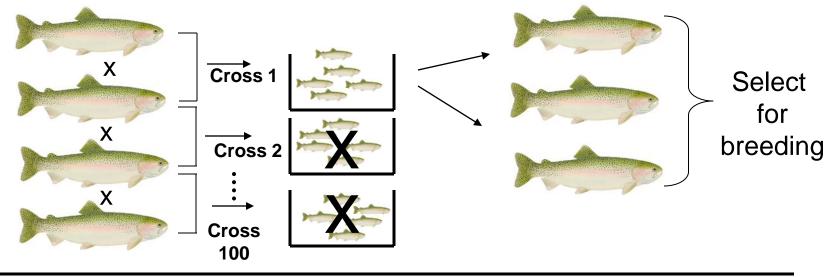
- Fed labeled diet
 - 73 full-sib families
 - 30 fish per family
 - 3 occasions
- Intake of each fish quantified
 - Beads counted

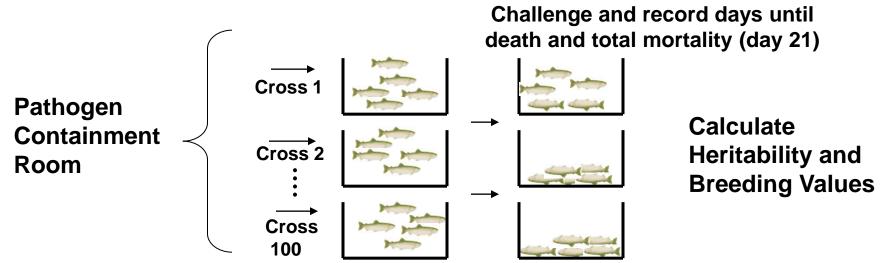
Diseases


Bacterial Coldwater Disease

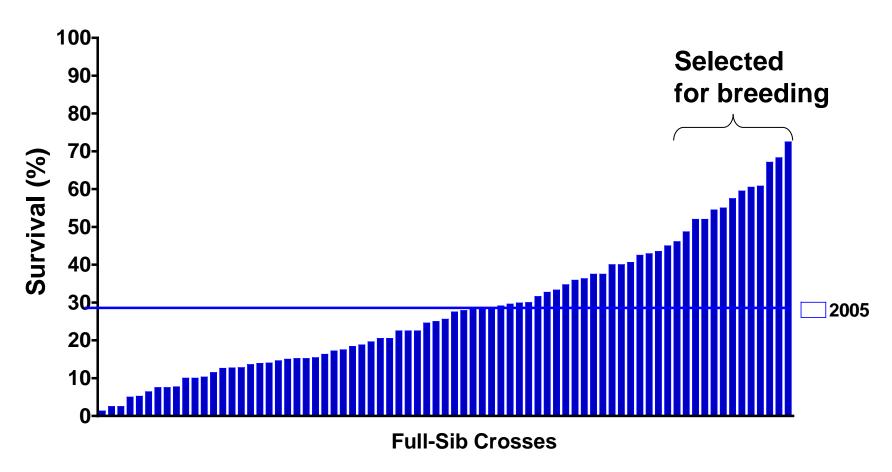
F. psychrophilum

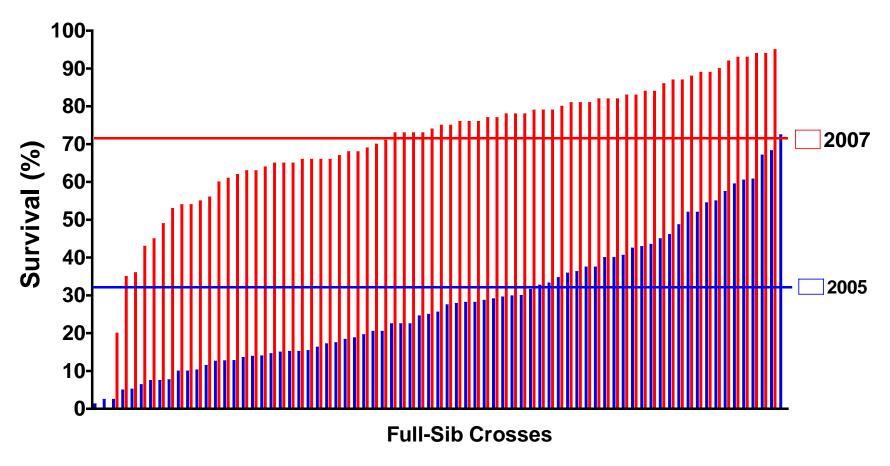
Economic impact


Y. ruckeri
Vaccination model
Recently emerging
biotype II



Family-Based Selective Breeding for Disease Resistance


Disease-Free Stock/Rooms



Large Variation in Resistance to *F.* psychrophilum challenge (2005 year-class).

- Silverstein, J.T., Vallejo, R., Palti, Y., Leeds, T.D., Rexroad, C.E. III, Welch, T.J., Wiens, G.D. and Ducrocq, V. 2008. Journal of Animal Science. Submitted
- Leeds, T.D., Silverstein, J.T., Vallejo, R.L., Palti, Y., Rexroad, C. E. III, Welch, T.J. and Wiens G.D.
 Journal of Animal Science. In Preparation

Selective breeding increased average survival (2007 year-class).

- Silverstein, J.T., Vallejo, R., Palti, Y., Leeds, T.D., Rexroad, C.E. III, Welch, T.J., Wiens, G.D. and Ducrocq, V. 2008. Journal of Animal Science. Submitted
- Leeds, T.D., Silverstein, J.T., Vallejo, R.L., Palti, Y., Rexroad, C. E. III, Welch, T.J. and Wiens G.D. Journal of Animal Science. In Preparation

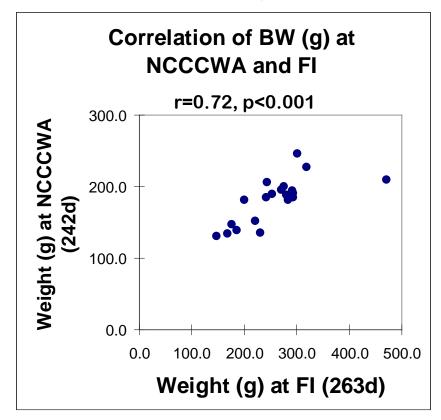
Characterization of Resistant Fish

- Are fish resistant throughout life cycle?
 - Yes 2 g, 10g and 800g evaluation
- Are fish resistant to other Fp strains?
 - Yes –2 other strains tested
- What is the mechanism of resistance?
 - More resistant to BCWD= bigger spleen
 - Differences in immune gene expression

Susc. Res.

Hadidi, S., Glenney, G., Welch, T.J., Silverstein, J., Wiens, G.D. 2008. The Journal of Immunology. 180:4156-65.

- High intensity recirc environment vs. traditional raceway
 - Will fish grow as well as , or better than in "traditional" system?
 - > Environmental effect
 - Will the fish that grow best in traditional system be the same fish that grow best in high intensity system?
 - Genotype x environment effect


GxE: a real concern?

- Tolerance:
 - Water hardness
 - Temperature
 - Waste product concentration
 - Fish density
- Examine performance of families across different environments
 - NCCCWA, CFFI, NCSU
 - Flow through vs. Partial Re-use

Comparison of families in different environments

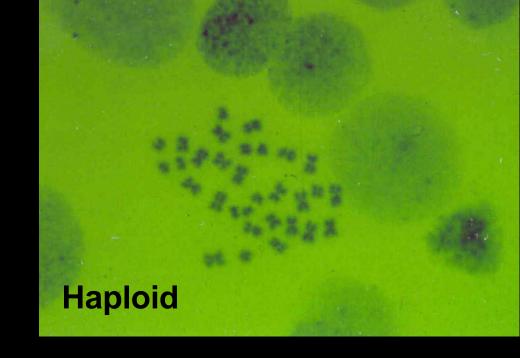
Partial Re-use systems

Flow Through systems

Correlation of BW at NCCCWA and NCSU 40 Weight (g) NCCCWA (7/2 20 20 40 60 Weight (g) at NCSU (7/26/04)

Silverstein and Summerfelt (unpublished)

Silverstein and Hinshaw (unpublished)


Creation of Tetraploids

Chromosome Set
Manipulation can
produce rainbow trout
which are sterile

Triploid Production

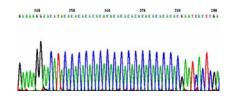
- Tripliod Benefits
 - More energy to growth and not reproduction
 - Protect germplasm/breeding strategies
- Similar protocol to developing tetraploids
 - Low efficiency, not 100% (diploid contamination)
- Cross Tetraploids with Diploids
 - High efficiency
 - Less defects

What are the genes?

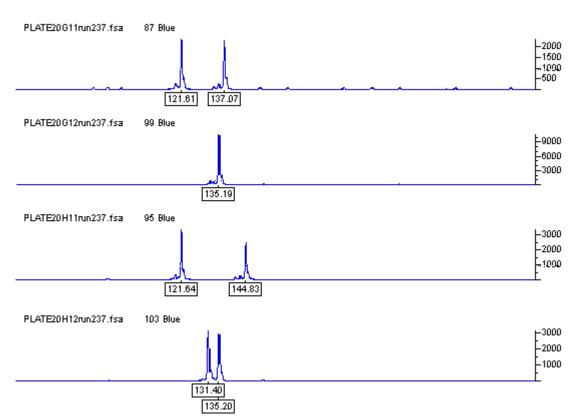
Genome

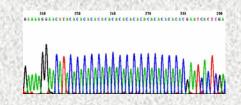
Proteome

and structural functions


Transcriptome

Use of Molecular Genetics for the Improvement of Rainbow Trout for Aquaculture Production

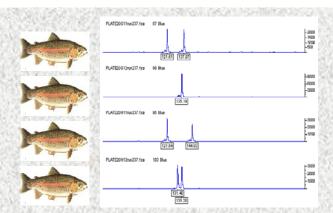

- Maintain genetic diversity thru selection
- Evaluation of families in common garden, ability to identify parentage
- Identify genes for selection which affect traits which are expensive or difficult to measure or require sacrificing fish
- Introgression introgression of haplotypes associated with a phenotype into a population
- Multi-trait selection, especially where multiple traits can not be evaluated on individuals
- Association with a breeding program including "commercially relevant" germplasm to facilitate use of that information NCCCWA broodstock


Genotyping Microsatellites

Genetic Markers

Useful for determining identifying individuals, parentage, characterizing population structures (migration, inbreeding, strain identification), estimation of genetic variation, conservation, evolutionary studies) and genetic maps having the goal of identifying genes affecting traits

Rainbow trout

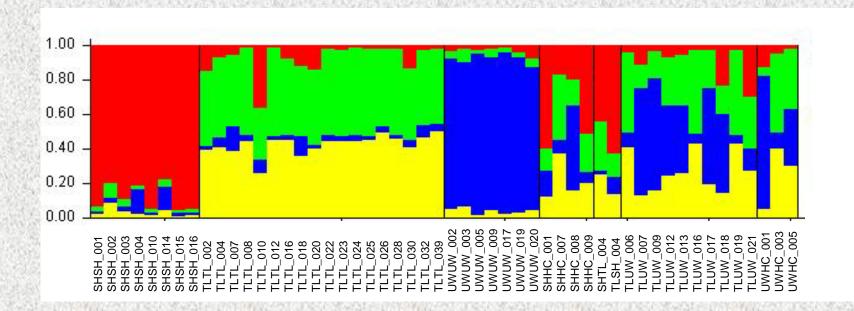

- ~835 anonymous
- 181 from BAC clones
 - Physical map integration
- 334 from genes
- Therion DNA, Int., Saratoga Springs, New York

Striped bass

- n = 498
- Kent Sea Tech Corporation

Collaborations

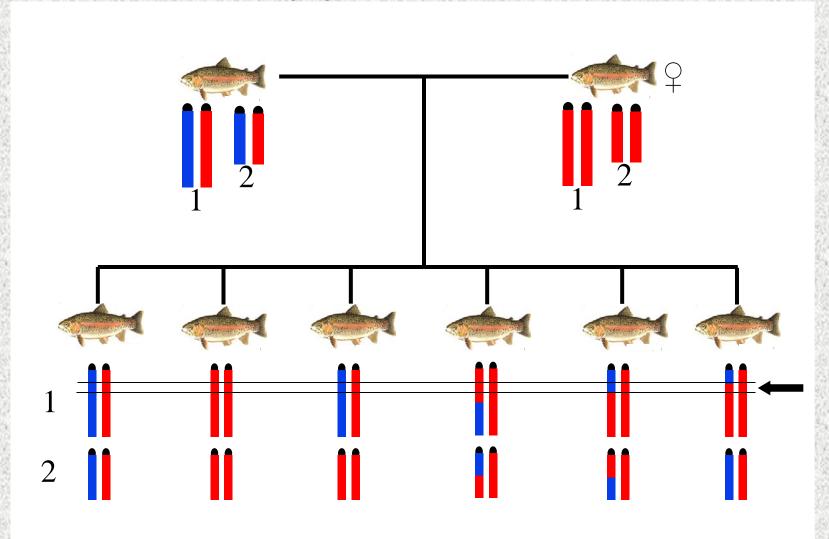
- Spanish mackerel
- Greater amberjack
- Red drum
- Pacific sardine
- Cobia

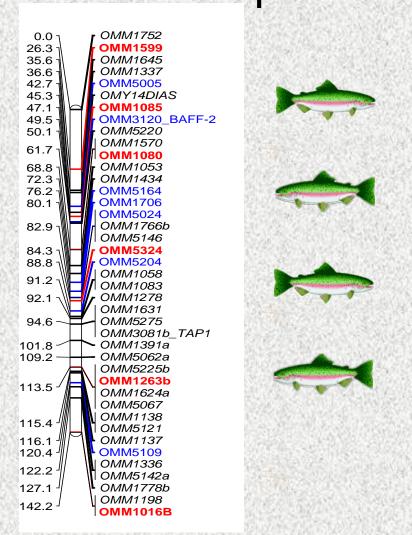


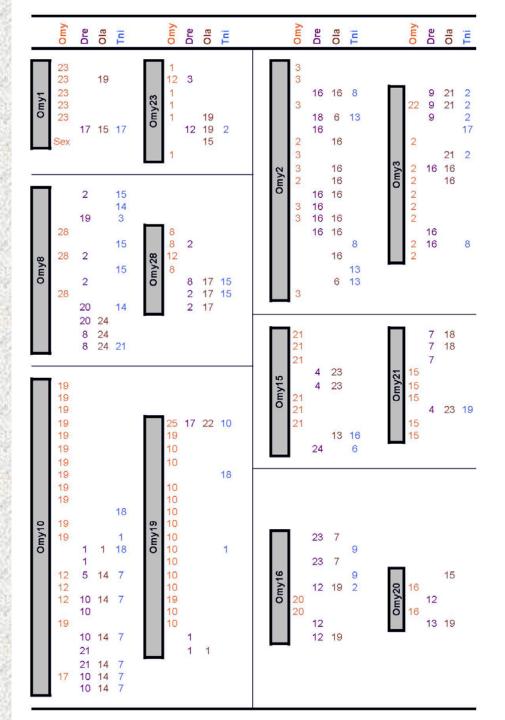
Relationship Matrix Between Individuals

			4.5			92,900		1224			N. Carlot	11234				11123				No lesson
		1041	1131	1561	2235	2308	3596	3752	3764	3766	3775	3861	3865	3891	3894	9068	3920	3948	3973	YRO3980
		YRO1041	YRO1131	YRO1561	YR02235	YRO2308	YRO3596	YRO3752	YRO3764	YRO3766	YRO3775	YRO3861	YRO3865	YRO3891	YRO3894	YRO3906	YRO3920	YRO3948	YRO3973	/RO
	YRO1131	0.4																		8
	YRO1561	0.5	0.3																	8
è	YRO2235	0.2	0.3	0.2																9
	YRO2308	0.5	0.3	0.4	0.2															
	YRO3596	0.3	0.3	0.3	0.2	0.2														13000
	YRO3752	0.2	0.3	0.2	0.3	0.3	0.2													
	YRO3764	0.2	0.3	0.2	0.3	0.3	0.3	0.4												- 8
	YRO3766	0.3	0.3	0.2	0.3	0.2	0.3	0.3	0.7											
	YRO3775	0.2	0.3	0.2	0.4	0.2	0.3	0.3	0.4	0.4										8
2	YRO3861	0.3	0.3	0.2	0.4	0.3	0.3	0.3	0.4	0.4	0.4									1
	YRO3865	0.3	0.3	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.3								
	YRO3891	0.3	0.4	0.2	0.3	0.3	0.2	0.4	0.3	0.2	0.3	0.3	0.4							19
	YRO3894	0.3	0.3	0.3	0.2	0.3	0.2	0.3	0.3	0.2	0.3	0.3	0.3	0.3						
	YRO3906	0.3	0.3	0.3	0.2	0.2	0.3	0.3	0.3	0.3	0.4	0.2	0.4	0.4	0.3					0
	YRO3920	0.2	0.3	0.3	0.3	0.3	0.2	0.3	0.3	0.3	0.3	0.3	0.4	0.3	0.3	0.4				8
	YRO3948	0.2	0.3	0.3	0.3	0.3	0.4	0.3	0.4	0.5	0.5	0.5	0.3	0.2	0.3	0.3	0.3			
	YRO3973	0.2	0.2	0.3	0.3	0.3	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3		ŝ
8	YRO3980	0.2	0.4	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.3	0.4	0.3	
	YRO4054	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.2	0.3	0.2	0.2	0.3	0.2	0.3	0.3

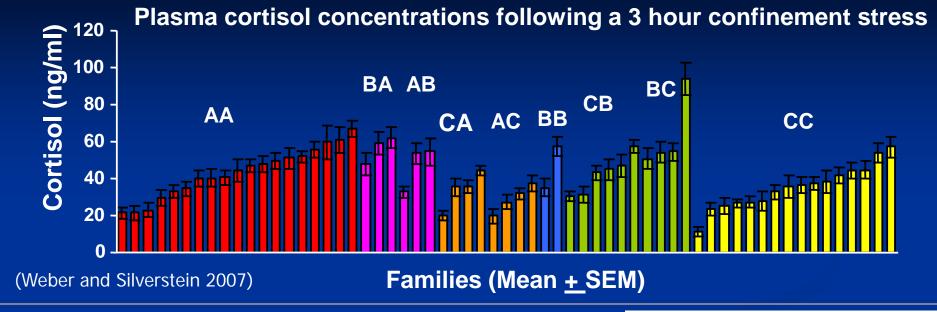
Population Substructure


- •Using LD data, we were able to determine that we have an effective breeding size (Ne) of ~150 in 2005 and 2006
- Actually used ~320 fish
 - ratio of .48 actually contribute unique genetic variation

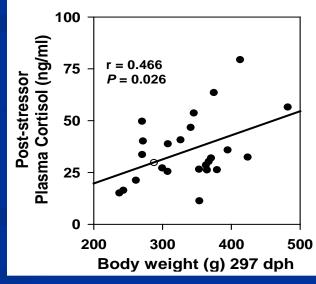

Genetic and Diet Effects on Growth Rate and Reproduction in the Rainbow Trout Strains of Troutlodge


- Palti et al., 2006. Evaluation of family growth response to fish meal and gluten-based diets in rainbow trout (Oncorhynchus mykiss). Aquaculture 255(1-4):548-556.
- Johnson et al., 2007. Development and evaluation of a new microsatellite multiplex system for parental allocation and management of rainbow trout broodstocks. Aquaculture 266:53-62.
- Pierce et al., 2008. Family growth response to fishmeal and plant-based diets shows genotype x diet interaction in rainbow trout (*Oncorhynchus mykiss*). Aquaculture 278:37-42.

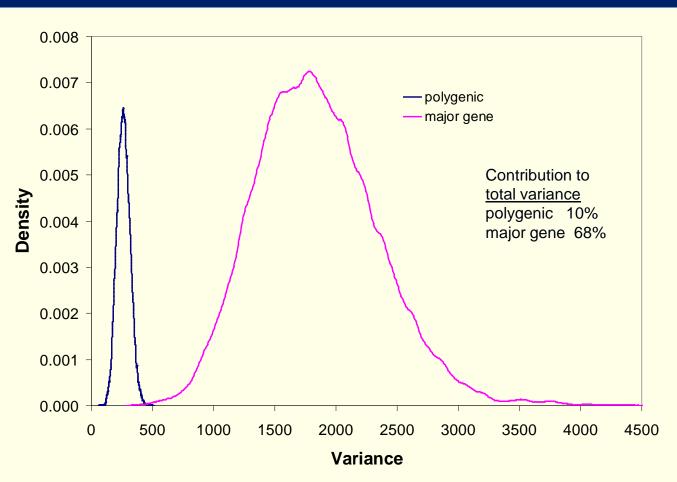
Mapping Traits



Rainbow Trout Comparative Map



Trait Evaluation: Stress Response



Heritability: $h^2 \ge 0.40$

(Lankford and Weber 2006)

Contribution of Major Genes to Post-stressor Plasma Cortisol Levels

Marginal posterior densities* for polygenic and major gene variance from the mixed inheritance model for plasma cortisol (Gibbs sampling: samples per chain=500,000; burn-in=250,000; thinning=5,000; chains=7)

USDA ARS National Center for Cool and Cold Water Aquaculture Leetown, West Virginia

