Aquaponics – Vegetable and Fish Co-Production 2013

Richard Tyson
University of Florida
Orange County Extension Service

INTRODUCTION

Sustainable agriculture combines plant and animal production, integrates natural biological cycles, and makes the most use of nonrenewable resources (USDA 1990 Farm Bill).

INTRODUCTION

- Aquaponics is a sustainable system that integrates hydroponic (plant) and aquaculture (animal) systems.
- □ Uses natural biological cycles (Nitrification)
- □ Conserves nitrogen fish waste nutrients are taken up by plants reducing fertilizer inputs.

Aquaponic Systems

NFT Floating raft Bench Bed

Crop and Fish Choices

□ Leafy salad crops, herbs, tomato, pepper, and cucumber

□ Tilapia, rainbow trout, largemouth bass, yellow perch, bluegill, Barramundi, koi and other ornamental fish

System Water Quality

 \square pH, 7.0 – 7.5

□ Oxygen, 5 ppm or greater

□ Ammonia, 1 ppm or less

□ Sunlight + Nutrient rich water = algae

Water Quality Measurements

- □ pH
- □ Ammonia
- □ Dissolved Oxygen
- □ Soluble Salts
- □ Alkalinity
- □ Nitrate

Aquaponics Nitrogen Cycle

Figure 1. Nitrogen cycle in aquaponics.

Nitrogen from Fish Feed

□ In aquaculture, the generation of NH₃-N in recirculating water through fish waste is based on the fish feeding rate:

- $\square \quad \mathbf{P} \ \mathbf{TAN} = \underline{\mathbf{F} \ \mathbf{x} \ \mathbf{PC} \ \mathbf{x} \ \mathbf{0.092}}$
- \Box

- \Box F = feed weight, PC = % protein content of the feed, T (time) = 1 d.
- □ 1 kg of fish feed with 30% protein will produce 27.6 g of N in 1 d
- □ Or 10% of the protein in the feed becomes nitrogen in the water!

Total Ammonia Nitrogen

$$TAN = NH_4^+ - N + NH_3 - N$$

$$NH_4^+ = NH_3 + H^+$$

pH Determines Ammonia Equilibrium in Water

pH 6.5 7.5 8.5

$$NH_3 = 0.2\% \leftrightarrow 2\% \leftrightarrow 18\%$$

The Dichotomy of pH Optima for 3 Organisms

Hydroponic Plants = 5.5-6.5

Aquaculture = 6.5-8.5

N. Bacteria = 7.5-9.0

NITRIFYING BACTERIA

□ Nitrification maintains water quality by oxidation of ammonia to nitrate (*Nitrosomonas sp.* + *Nitrobacter sp.*)

$$\square$$
 NH₃ + 1½ O₂ \rightarrow NO₂ + H+ + H₂O Eq 1

$$\square \quad NO_2^- + \frac{1}{2} O_2 \rightarrow NO_3^- \quad Eq \ 2$$

■ Measure substrate loss, product accumulation

Water pH Affects TAN Loss From Recirculating Tanks With Perlite Biofilters Inoculated With Nitrifying Bacteria

Biofilter Performance as measured by TAN Removal

Soluble Salts

□ Plants need balanced nutrition which can nearly be supplied by fish waste

□ Recirculating vs. intermittent nutrient application

□ Leafy salad crops & herbs vs fruiting crops

'Fitness' Cucumber Fruit Yield (kg/plant) Response to pH and Production Method

	E. Mkt.	T. Mkt.	T. Cull
6.0-aqpon	1.52 a	3.64 a	0.44 a
7.0-aqpon	1.32 a	4.12 a	0.33 a
8.0-aqpon	0.67 b	3.54 a	0.33 a
Contrast	L**		
6.0-hc	1.57 a	3.63 a	0.53 a

System Sizing

Basic System

S&S Aquafarms

Simplified Basic System Set-up

Aquaponics - Application

- \square Target pH should be between 7.0 8.0
- □ It depends on ammonia level (2ppm) and condition of fish and plants I-4 Rush Hour
- □ Foliar or root feed plants to overcome deficiencies
- □ Reduce feeding and or increase water discharge and replacement to lower ammonia

Aquaponics - Application

□ A thorough knowledge of the organisms in the system is required for success.

□ Juggles balance between ideal water quality conditions for the growth of fish, plants, and nitrifying bacteria.

Aquaponics research is on going

Stacked System $$75/m^2 + $25/m^2 = $100/m^2/Time?$ Add float system or fill and drain system to increase plant area?

System Sizing – Triple Crop?

So Why Aquaponics?

- □ The Water Budget!
- □ Plants transpire lg amounts of water (1pt 6 qt/d/pl).
- □ Recirculating aquaculture replaces 5 to 10% of system water/day to maintain water quality.
- □ Potential for zero discharge to the environment

So Why Aquaponics?

- -The Nitrogen Budget!
- □ Fish produce large amounts of ammonia nitrogen as waste which is harmful
- □ One plant uses 1 (lettuce) to 20 (tomato) grams of nitrogen per season
- □ 100 lbs of fish will supply enough nitrogen for 4,050 lettuce plants or 540 tomato plants

Marketing

- USDA wholesale price market reports do not compete with field grown on the wholesale level
- ☐ Get as close to retail pricing with on-farm sales, high end food stores, restaurants and farmers markets

Regulations - Aquaponics

- □ Farm food safety audits are currently required by big box stores for vegetables
- □ Vegetables may be sold to buyers who do not require the audit
- □ Ensure that the vegetable part being eaten does not contact the water

Regulations - Aquaculture

- □ Pond side whole few
- □ Blue Tilapia few, live or dead
- □ Nile Tilapia should be dead unless buyer has a license from FDACS Fish & Game
- □ Any knife or filleted Many food safety regulations for handling & storage

Uncertainty, high cost, regulations, do your research!

Aquaponic Resources

- □ Harbor Branch Oceanographic Institute http://www.fau.edu/hboi/
- □ Aquatic Eco-systems, Inc. http://www.aquaticeco.com/
- □ Blackwater Creek Koi Farms http://www.koisale.com/
- □ Aquasafra, Inc. http://www.tilapiaseed.com/